

WAVE ENERGY

EXTRACTING KINETIC ENERGY FROM

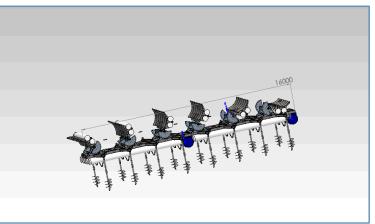
DCEAN BRAKING WAVES

GENERATE ELECTRICITY AND SEAWATER DESALINATION

GOALS



- Ur primary goal, is to develop a world-class business to meet the demand for clean and renewable energy, with high returns for our investors.
- U We offer participation to one or more strategic partners for international deployment of our technology.
- Urproject offers real opportunities to participate, by providing funds to develop the technology, obtaining paybacks and returns for these contributions.
- Satisfy part of the demand for water and electricity of 3500 isolated communities in Chile, with small-Size Generation.
- U We seek to establish the short test term partnership, in order to build the first plant of 20 MW in Chile.
- **!** We create for the formation of WILEFKO SPA, a joint stock company, which will be responsible for implementation and logistics to achieve adequate margins and high return over investment to our shareholders



Begin-2011

Wave system composed of oscillating bodies with an intermediate stage of accumulation of compressed air to generate electricity and seawater desalination

The estimated energy and power based on those laboratory results are as follows: for a 20 MW plant located 1000m away from the coastline, it can obtain averaged energy of 175,000 MWh/yrs in Chile, If we apply the price of cost margin at \$US 140 per MWh, its generated income will be \$US 35 MM per year.

Next-2015

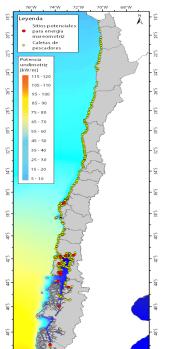
Exclusiveness Rights over the technology until year 2031, in Chile and Worldwide, for 27 country.

Chile

GLOBAL DEMAND FOR ENERGY AND WATER

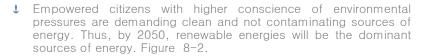
2010

WILEEKO


- 1500 MM No electricity **
- 1 800 MM waterless *
- **1** 2.600 MM without sanitary services

2040

- Increase 2.400 MM **
- Power demand16.000 TWh/ys**
- **J** Residential consumption 75%**


• Source : Water Sanitation Health, WHO/UNICEF joint , monitoring report 2012. Levels & Trends in Child Mortality report written by OMS y UNICEF, 2012

- Price: Substation Quillota average US\$237 MWh, 2014
- 20% /25 ERNC, law 20.257
- Location potential 3,500
- 4200 Km coastline
- 240.000 MW available
- NCRE demand, 23.000GWh/Yrs, 2025
- NCRE potential Market US\$8.700 MM, 2025

POTENTIAL MARKET

Estimated incomes from ocean energies at commercial stages by year 2030, are shown in fig 4-2 y 4-4. Market share near 5% by year 2050, considering the worldwide energy matrix.

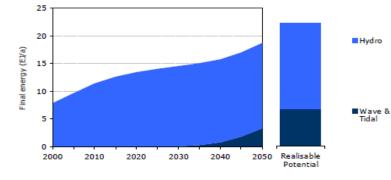


Figure 4 - 4 Global deployment potential of hydro and ocean power. (Left: Evolution of deployment potential over time, right: Maximum feasible potential)

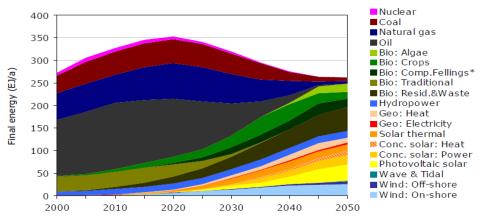
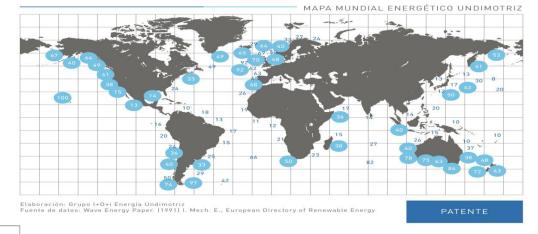
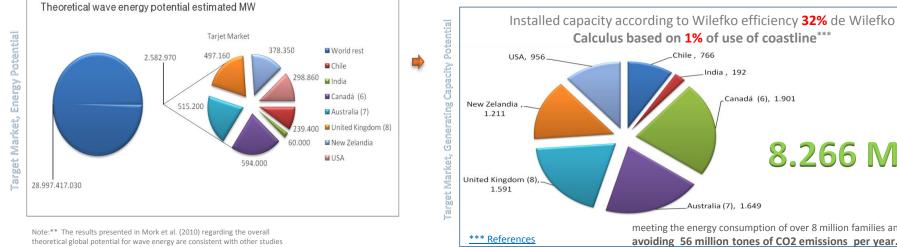


Figure 4 - 2 Global energy supply in the Scenario, split by source. (*Complementary fellings include the sustainable share of traditional biomass use.²⁵)

Wave & Tidal energy 2050 5% = 800 TWh/yrs





- ↓ There aren't any dominant wave energy projects in the international market yet; most are at experimental stage or at early stages of commercialization
- ↓ Light blue circles identifies the international locations of economic interest, over 25 KW power per meter.

28.000 TWh/yr

Annual net theoretical coastal power worldwide wave energy**

Calculus based on 1% of use of coastline*** Chile, 766 India, 192 Canadá (6), 1.901

Australia (7), 1.649

meeting the energy consumption of over 8 million families and avoiding 56 million tones of CO2 emissions per year.

8.266 MW

(Cornett, 2008).

Countries, satisfy current domestic demand

		Electric										
		power						Electricity				
		consumptio				Average	Electricity	for	Electricity	Electricity		Potencial
	Population	n per	without	Consumption	Generaction	price US\$	for industry			demand 2040		Total annual
	total	capital	electricity	GWh/yr anuales	electric NO	cent/KWh	MWh US\$	MWh US\$		anuales MWh/yr	longitud de	wave energy
	Millones (1)	KWh (1)	MM 2013 (1)	2012 (1)	fósil % (1)	anual (2)	(3)	(3)	(11)	(11)	costa Km(4)	TW/yr (12)
Target Market Electric												
Chile	17	3.568	0,10	62.316	5,47%	16	126,70	185,38	130.235	288.060	4.200	1.049
India	1.237	684	309	846.024	2,98%	19			2.009.533	5.101.624	6.000	263
Canadá (6)	35	16.406	s/d	572.239	22,87%	8			757.534	1.024.702	11.000	183
Australia (7)	8	10.720	słd	90.717	1,85%	21			134.925	338.686	25.760	1.300
United Kingdom (8)	63	5.516	sld	348.783	10,60%	20	134,17	220,74	439.847	564.676	12.429	230
New Zelandia	4	9.399	słd	41.665	33,75%	22	94,34	231,76	56.035	77.098	15.134	1.657
USA	314	13.246	sld	4.158.119	11,99%	12	66,98	118,83	5.258.468	6.771.187	19.924	950
West Coast (5)											250
Alaska (5)											620
Hawaii (5)											80
TOTAL Market				6.119.863					8.786.578	14.166.033	94.447	5.632
											Source: Develo	pped in-house

References

(1) The World bank http://www.worldbank.org/

(2) IEA International Energy Agency 2011 http://www.iea.org/

(3) Key World Energy STATISTICS 2013, International Energy Agency

(4) http://es.wikipedia.org/wiki/Anexo:Pa%C3%ADses_por_longitud_de_costa

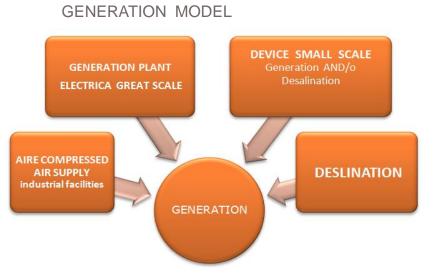
(5) Mapping and Assessment of the USA Ocean Wave Energy Resource, EPRI, Electric powar reseach institute, 2011// Bureau of Ocean Energy Management (BOEM)

(6) BEDFORD INSTITUTE of OCEANOGRAPHY, Her Majesty the Queen in Right of Canada, 2009,pag 7

(7)Copyright Carnegie Wave Energy Limited @ 2013// The potential of wave energy, Jenny Hayward and Peter Osman, CSIRO Energy Transformed Flagship, @ 2011 CSIRO

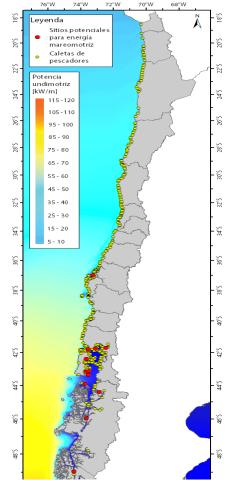
(8) Carbon Trust Foreword to UK Wave Resource Study. Carbon Trust and AMEC Environment & Infrastructure UK Limited October 2012 "

(9) Nine month average value of the incident wave power is 10 kW/m and peak monsoon average is 20 kW/m, Center for th Research and Environment agement, Cochin 17, India


(10) Se aplica efciciencia del 32% de Wilefko disponibilidad recurso 50%

(11) Proyección basada en la tasa de crecimiento PIB promedio de los ultimo 10 años, Banco Mundial

(12) Recommendations for Chile's Marine Energy Strategy - a Roadmap for Development, Aquatera Ltd, United Kingdom


BUSINESS MODEL PRINCIPAL

Generation half size

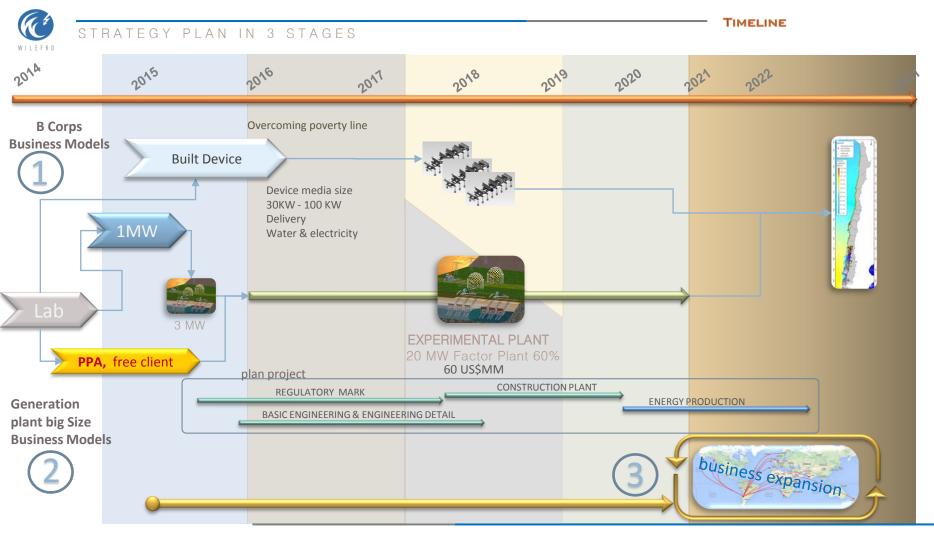
- Designed for isolated and insular Chilean . areas.
- To generate electricity and / or fresh water. and / or Lighting coastline.
- Location potential 3,500 .
- Provide water pumping tasks at low cost . for aquaculture. (salmon industry).
- coastline lighting for community

Project Generation great size, Plant to up 20 MW power

National: Free Customers, Generator business, SIC spot market or PMGD, Salmon farms, Mining attributes sale

Annual income : MMUS\$ 22.000, 2010 → 5% ERNC, law 20.257 or 20/25 ~ 23.000GWh/yrs

Demand Proyection 2020 : 98.000 GWh


BUSINESS MODEL SECUNDARY

LICENSING MODEL

Knowledge is tradable !!

- J Technology Package
- Patent
- I Trademark Registration
- **J** Procedures
- **!** Another Know How
- I Play, Display It, Modify It, Use It

NATIONAL WAVE ENERGY POTENTIAL

NATIONAL POTENTIAL INSTALLED

Tecnología ERNC	Potencial Optimista (MW)	Potencial Conservador (MW)
Undimotriz	240.000	164.000
Solar	228.000	100.000
Eólica	40.000	7.200
Hidroeléctrica	23.000	20.400
Geotermia	16.000	3.300
Biomasa	13.700	470
Minihidro	1.400	1.400
Mareomotriz	800	600
Biogás	400	400
Total	563.300	297.770

Fuente: Estudio UTFSM 2008: Estimacion de potenciales brutos al 2015, ENAP 2005, Estudio CNE-GTZ 2008, CNE-GTZ 2007, CNR y MEN 2007-2010, CNE 2009, Estudio Garrad Hassan 2009 y Baird & Asociados.

Sales equipment model

6 train sale palette 100KW power to:

- •Compressed air delivery
- •Delivery of energy storage
- •Pumping seawater
- •Energy without storage.
- •Factor plant 60%

Sale of energy and power model

- •1MW plan to sell power to the grid under the PMGD or spot market or PPA
- •Factor floor 50% -70%
- •MW built cost US \$\$ 3.0 MM
- •MWh annual yield for 1 km of coastline 175GWh, with 186 trains per km app.
- •Monomic sale price \$ 150 MWh

Alternative products

Seawater desalinationCoastal edge lighting

TECHNOLOGY

By observing nature

video link

Energy from each wave could be harvest more than once

We have 3 years of research with real tests at sea

video link

Empirical

Our invention was developed starting from the observation of the behavior of waves in real nature. Once a breaking wave hits an obstacle like columns of a port deck, the wave has enough energy to recover itself from that hit and continues hitting other columns, as it can be seen in any port.

So, the idea we worked on was to harvest each wave several times, with group of vertical flaps, arranged as a train facing the breaking waves coming to the coastline.

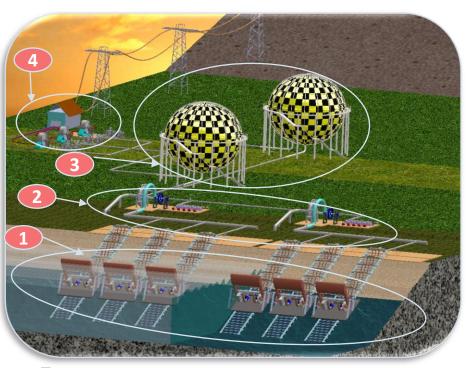
he whole generation facility is composed of 4 different stages:

1. Harvest stage:

formed by the group of oscillating flaps arranged as groups of trains of flaps running over rails, in front of the coastline, facing the breaking waves. Rails allow adjusting each train to follow tide level. At this stage we just pump water to the beach.

To simplify the figure trains of flaps are not shown in the figure.

2. Compression Stage


Pumped water is used as energy source to generate compressed air, that then is use as an energy deposit of stored energy.

3. The Storage stage

Compressed air is stored as a great warehouse of energy, in a similar approach of hydro electrical dam. To simplify explanation spherical big ponds are shown as part of the facility, but can be replaced in the real project just by the tube pipelines carrying the air to the final consumers.

4. Generation/Distribution Stage (transformation)

Compressed air can be deliver according to commercial agreements, using a pneumatic motor and a generator.

Two direct spin offs are immediately achieved from our concept and invention:

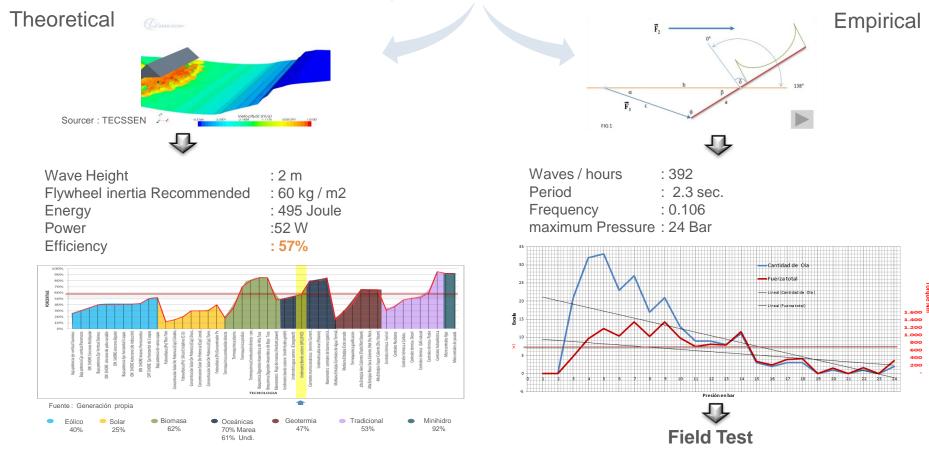
- 1. Pumped water over the coastline could be used for Desalination projects, cooling application for fan purposes.
- 2. Compressed air can be commercialized as raw material for a wide range of applications, e.g., mining camps

	VATION AND COM	PETITIVE ADVAN	ITAJES			
WILEFKD	Waves	Horizontal vector Wave compression near coastline		Wilefko can capti	"Water wall" moving at 30 Km/h 800 times denser than air Energy here is more concentrated ure more energy because its is the	
	Concave Impact Flap With flotation	57% efficiency (CFD S	tar-CCM+)	nearest to the coa power efficiency of	ast compared with the rest. The better of our design is obtained from 2 m n are the most predominant wave sizes	
	Train of flaps	Successive flaps	∑a(1-b) ⁱ a= power; i=o i=number	b=% loss, of flaps	2-3 times wave energy is captures from the same wave, improving harvest efficiency of the coastline	
	Storage	Available energy accor Higher Firm Energy Fac	ding to demand		Sale price per MW raises from 30% to 200%,	
	Rails on coastline for the	Allow adjust vertical po level	sition of flaps accordin	Allows 10% efficiency increment		
	trains of flaps	Keep down maintenand of vessels	ce costs, avoid use	Just 18% of investments in under sea water, thus, lower investment risks		
		1. With Storage stage \rightarrow	Power Model or stabilizat	ion	28% of investment with direct	
	Flexible Business Model	3. Portable devices, with 3	Generation Model 00KW capacity or lower, f plication over the coastline vater	generation At Atacama region there are 74 isolated locations Los Lagos region: 67 locations with higher isolated index's.		

COMPARATIVE CHART

Technology Name	Images	Angular Variation	Flap Design	Surface of Impact	Deep of Operation	Declared Efficiency
Wave Roller Devices	-	40°	Medium	26 m Wide, 12m high> 1,6 K¥ m2 Total unit 500 K¥	10 to 15 m	The efficiency of the hydraulic system is about 60 % (depends of operating point), so 500 kW per unit absorbs about 830 kW from the waves.
Aquamarine Oyster		35°	Medium	26m× 12m> 1,5 K₩ m2, Total unit 800K¥	12 to 20m	Oyster 800 represents a step change in design, size and power output. The oscillator is about 50% wider (26m) in comparison to Oyster 1, but produces about 50% more energy because of the hydrodynamic design optimization (a)
Bio Power Systems	- Alto	35°	Medium	Туре-В: 3mx2.5mx2.5m, 4kW> Total unit 1,5 K₩ m2	12 to 300m	50%
WILEFKO		135°	High	1m×1m> 5,9 K₩ m2	5 to 10m	57% according to computer aid modeling with CFD Star-CCM+ software
Comments		The type of Wilefko wave palette allows greater rotation	Our concave parabolic shape design of our flaps facing the waves allows Wilefko to concentrate energy from energies becoming a better capture method, see Fig 1.	Capture performance for 1m² flap facing 2m waves, is calculated. 2m wave was chosen, due to the fact that is the most common high found in Chilean coastline, see Fig. 2e, Fig. 1	Depth of the location of generating devices is a key parameter, because in deeper waters maintenance costs are higher	This values are only referential. Capture method of these technologies is unknown.

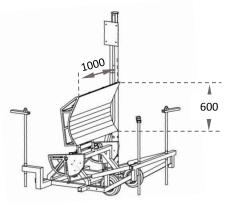
Source : house and *Energies 2013*, Centre for Marine Technology and Engineering (CENTEC), Instituto Superior Técnico, Technical University of Lisbon,

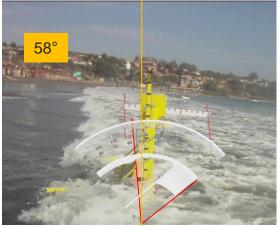

INVESTIGATION

WE HAVE 3 YEARS OF RESEARCH WITH REAL TESTS AT SEA

INVESTIGATION

how many energy there is available in breaker zone?


WILEFKO



FIELD TEST ANALYSIS

WILEFKO

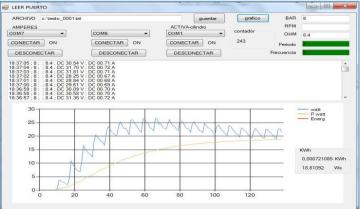
Pressure 5,08 bar

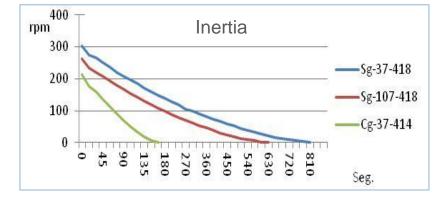
That is, for a wave height of 90 cm with a thrust of 712 kg in less than 2 seconds, and torque of 236 NM, for an area of 100cm x 60cm and 80 cm depth

	H (cm)	bar	Ν	Nm
	35	5,03	126	38
	60	15,88	441	128
High power	→ 91	24,19	712	213

working depth 80cm

REVERSE ENGINEER LABOTARORY




LABORATORY RESULTS

Working pressure	5-6 bar
Simulated wave height	35cm
Flywheel inertia	420 kg
	300 RPM
Power	120W
AC Generator	3kW

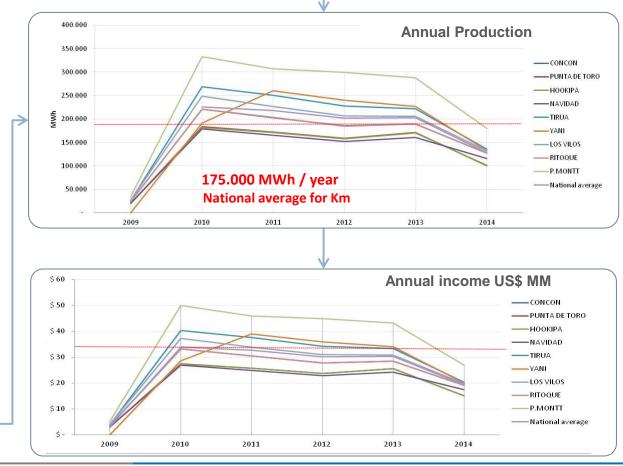
LABORATORY DATA PROJECTION

RESULTS

80% of waves in Chile in the 50% ----Caldera Graphics % distribution of wave for locations range of 1.5m to 3.5m; this 45% ------copiapo river determines the flap size 40% -B-Huasco locations ₹%wave 81,5% 1.5><3,5m 35% Mamani **Condition Data Wave** Ritogue 30% localities 13 25% Resolution 3 hours ----- punta de toro 20% Period 2009-2014 source: windguru 15% 10% 5% 0% playa carelmapu 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4,5 5,0 5,5 6,0 6.5 7.0 7.5 8.0 8.5 9.0 9,5 10,0 Hwave m -tirua **FLAP Electricity Projection Average** Height 2,5m 61 KW Train Power Width 3m Energy annual 1078 MWh

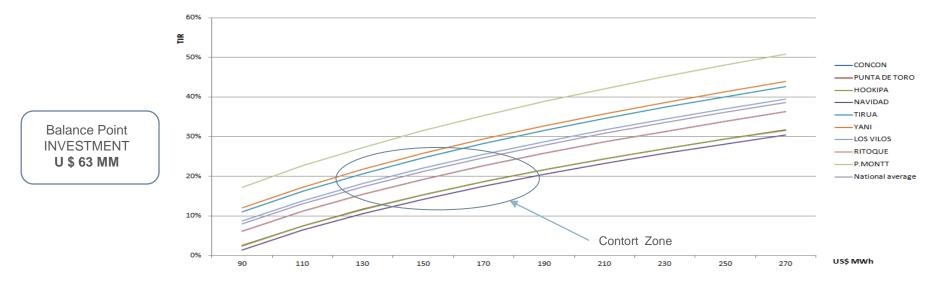
BUSNESS STRATEGY

LABORATORY DATA PROJECTION


PROJECTION

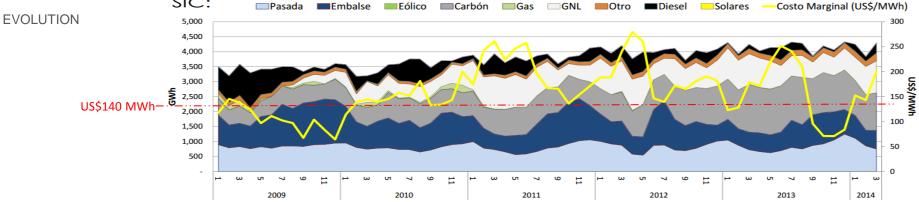
EXPERIMENTAL PLANT 20MW

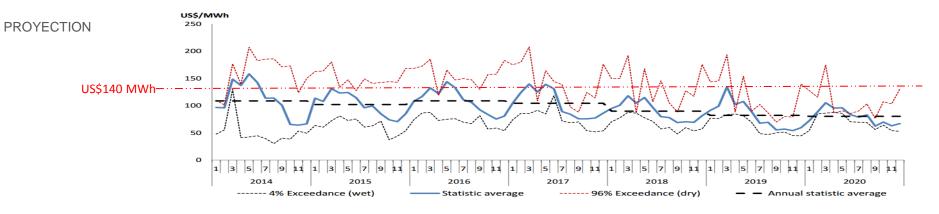
FINANCIAL VARIABLES Quantity Cmg Price	2 cluster \$ 140.00 MWh
CLUSTER 500m coast Quantity Separation between trains	100 Train 2m
TRAIN Quantity flap per train Re- catch efficiency%	6 Flap 75%
FLAP Height Width Lab error factor.	2.5m 3m 10%


Besides applying available energy, wave forecasting global GFS (NOAA / NCEP) for the last 5 years on 9 locations, our study of wave field trials was calculated, allowing to quantify total energy production if we had 20 MW plant operating

Condition Data Wavelocalities9Resolution3 hoursPeriod2009-2014source: windguru

SENSITIVITY TIR: EXPERIMENTAL PLANT 20 MW INVESTMENT


To meet a required return of Business Model Generation at larger scales, 3 variables must be met

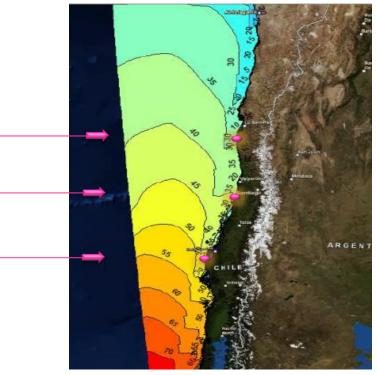

- 1 ± \$ 140 per MWh
- 2 Availability of power 30 kW per meter.
- 3 Economies of scale, plant from 20 MW or more.

 J Substation Quillota 220 kV, average US\$237 MWh , 2014
 J Maximum value in Chile in July 2013 US \$312 MWh

WILEEKO

CHILE : SPOT MARKET MARGINAL COST, EVOLUTION & PROYECTION

Fuente: Systep



INTEREST ZONE SELECTION CRITERIA, for Plant 20MW

- **J** Located from Antofagasta to Puerto Montt.
- **J** With energy potential over 35 kW per meter coastline.
- **J** Beach not suitable for swimming, highly dangerous.
- Surf zones with a width over 100m from the beach shore up to the first breaking wave.
- J Outside the urban area over 10km from city or town limits
- 1 Inside industrial areas or ports (like mining ports)
- **J** Maximum 30 km far from a electric power distribution plants.
- J Minimum coastline front length: 1700m
- J Outside of protected or ecological reserves
- J Outside existing maritime concessions areas
- 1 Maritime zone concessions available
- I More than 75% of waves greater than 2.5m

PRE-SELECTION

Location	P	Potencial
Los Vilos Punta de toro Yani Con Con	${\rightarrow}$ ${\rightarrow}$	33 KW 54KW 57KW 9 KW, test fields

Source Baird

Annual Energy pilot plant in MWh

	2009	2010	2011	2012	2013	2014	TOTAL	Average	Power MW
CONCON	20.206	187.490	172.149	156.609	159.900	107.723	804.079	169.037	19,30
PUNTA DE TORO	17.110	154.606	144.749	132.933	143.690	84.786	677.874	143.995	16,44
HOOKIPA	17.010	153.375	144.336	132.719	143.046	85.087	675.571	143.369	16,37
NAVIDAD	16.828	151.065	139.249	127.686	135.198	97.772	667.799	138.300	15,79
TIRUA	21.714	229.133	213.411	193.856	188.681	114.700	961.495	206.270	23,55
YANI	-	163.243	221.900	204.179	192.992	112.759	895.073	206.357	23,56
LOS VILOS	23.056	211.352	192.336	175.493	174.332	111.848	888.417	188.378	21,50
RITOQUE	20.192	187.828	172.543	156.036	160.099	107.783	804.480	169.126	19,31
P.MONTT	29.503	285.708	262.546	256.209	246.003	152.971	1.232.940	262.617	29,98
National average		191.533	184.802	170.636	171.549	108.381	845.303	180.828	20,64

REGULATORY

		<u>k</u> ,		(80m)	-		Legis	lation spe Just fo
Generador en el Mar	Cableado	Generador Cercano a la Costa	Generador en la Costa / Cableado o Tuberías	Generador	r en Tierra / Subestacion	nes / Oficinas etc.	Avera	age of pr
ORGANISMIC			a (SUBSECMAR)					
Servicio Hi			de la Armada de Chile (S	HOAL				
Servicio III	iarogranco e		vicio de Evaluación Ambie	-				
					ienes Nacionales			
					cal/Municipio			
			M	nisterio de f	Salud (SEREMI)		Costos y Plazos Ap	roximados
			N	linisterio de	Energía (SEC)			
			Depar	tamento de	Rentas y Patente	s	Tiempo de	
POTENCIALES		REQUERIDO	c.	Dirección	de Vialidad		Procesamiento de Aplicaciones (días)	Tasas (CLP)
Concesiones I		nequeneou	-				1 a 2 años	15,000 a 20,000
Permisos de N	Navegación						varios	varios
		Dec	claración de Impacto Amb	piental (DIA)	0		varios	varios
		Ev	aluación de Impacto Am	oiental (EIA))		varios	varios
Nota: solo los	s proyectos o	de	Permiso para arrenda				varios	varios
capacidad >3			Concesión para un us		de inmuebles fisc	ales	varios	varios
presentar EIA			Permiso de Edifica				30	5,000 a 15,000
(Resolución d Ambiental)	ie calificacio		 Aprobación De Anti- 				15	<100
(constant of)			4.Certificado de Infor				15	<100
			5. Recepción Definiti				7	<100
			 Patente Municipal Ocupación de cam 			(cobrodimonsi f =)	-	<100
			8.Ocupación de cami				5	1.000 a 5.000
			21. Informe sanitario	<u> </u>	s para transporte	(sourcesu)	30	5.000 a 15.000
					atamiento/diceo	sición (RISES)	60	<100
							00	
			22. Autorización sani 31. Autorización Alm				90	5 000 a 15 000
			31. Autorización Alm	acenamient	o Temporal de Re		90	5,000 a 15,000
	el Ministerio		31. Autorización Alm 23. Calificación Indus	acenamient strial/Almace	o Temporal de Re enamiento			5,000 a 15,000
	el Ministerio idos a través		31. Autorización Alm	acenamient strial/Almace iduos Indust	o Temporal de Re enamiento riales (PAS 91)		60	
			31. Autorización Alm 23. Calificación Indus 24. Autorización Resi	acenamient trial/Almace iduos Indust iduos Indust	o Temporal de Re enamiento riales (PAS 91) riales (PAS 93)		60 varios	5,000 a 15,000 1,000 a 15,000
			31. Autorización Alm 23. Calificación Indus 24. Autorización Resi 26. Autorización Resi	acenamient strial/Almace iduos Indust iduos Indust ca Provision	o Temporal de Re enamiento riales (PAS 91) riales (PAS 93) al		60 varios varios	5,000 a 15,000 1,000 a 15,000 5,000 a 15,000
			31. Autorización Alm 23. Calificación Indus 24. Autorización Resi 26. Autorización Resi 41. Concesión Eléctri	acenamient strial/Almace iduos Indust iduos Indust ica Provision ica Definitiva	o Temporal de Re enamiento riales (PAS 91) riales (PAS 93) al		60 varios varios > 120	5,000 a 15,000 1,000 a 15,000 5,000 a 15,000 5,000 a 15,000
			 31. Autorización Alm 23. Calificación Indus 24. Autorización Resi 26. Autorización Resi 41. Concesión Eléctri 42. Concesión Eléctri 	acenamient strial/Almace iduos Indust iduos Indust ca Provision ca Definitiva Aguas Residu	o Temporal de Re enamiento riales (PAS 91) riales (PAS 93) al a uales		60 varios varios > 120 138 a 290	5,000 a 15,000 1,000 a 15,000 5,000 a 15,000 5,000 a 15,000 Up a 50,000

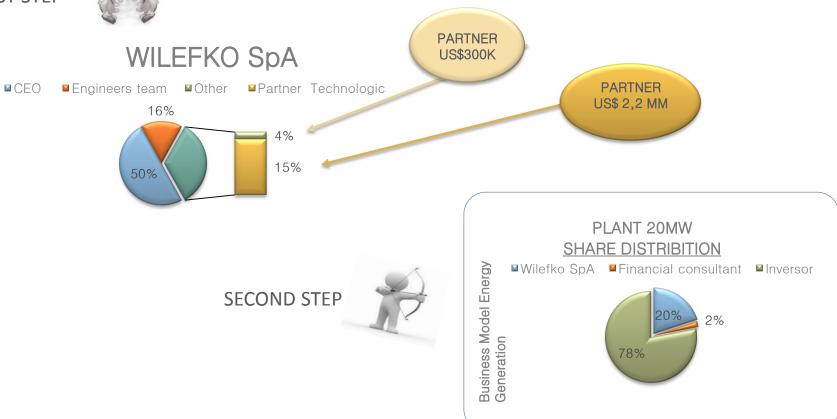
Legislation specifies non existent Just for approval

Average of processing 3 years

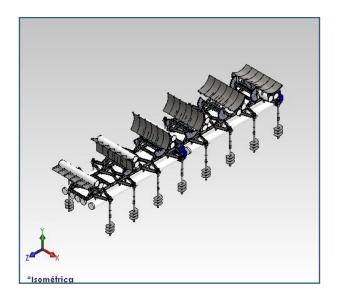
Surcer Aquatera Ltd / UK Foreign and Commonweath Office / P478 / Marzo 2014 / Rev 1 Nota: La numeración se refiere al registro de permisos del Gobierno Chileno

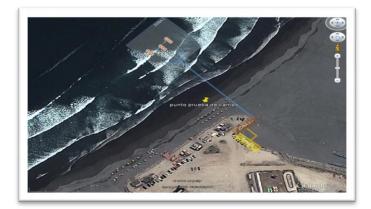
INVESTMENTS

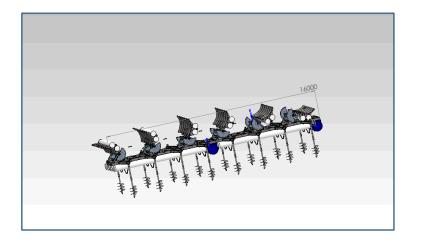
INVEST	MENTS 2014	2015-2016	2017	
PHASES COSTO PHASE INVESTMENTS New Partner Grants	Phase-III 30% scale model US\$ 425K US\$K200	Phase-IV Pilot model US\$MM 1.2 US\$MM 1.2	Phase–V 20 MW Plants, Chile US\$MM 63 US\$MM 63	Phase-VI Internationalization
PERIOD EXECUTION COMERCIALIZATION Intermediary sub products	Completed 85%	18-24 month PPA Local Industrial small LICENSING International Patent PORTABLE DEVICE Generation and/or	4–5 years PPA Local Industrial Potential join venture development of technology Cristian Peralta, Antofagasta Minerals (AMSA)	LICENCIAMIENTO International Patent GENERATION ROYALTY CONSTRUCTION ROYALTY

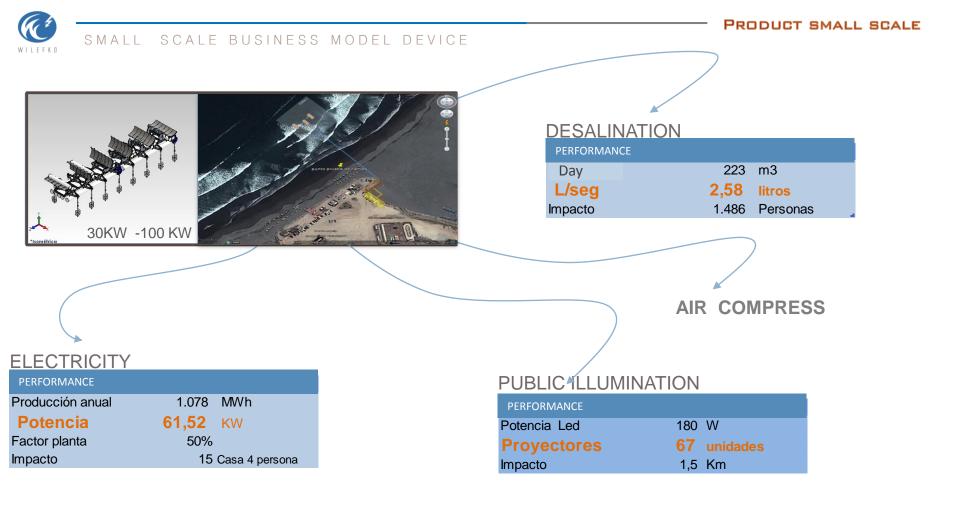

desalination

FIRST STEP


Research & Development







100 KW

- J Mid-size generation or desalination device
- I Mid-size generation device, for coastline lightning of Chilean ports, coastal counties and regional governments.

OUR COMPANY

36

WILEFKO SPA

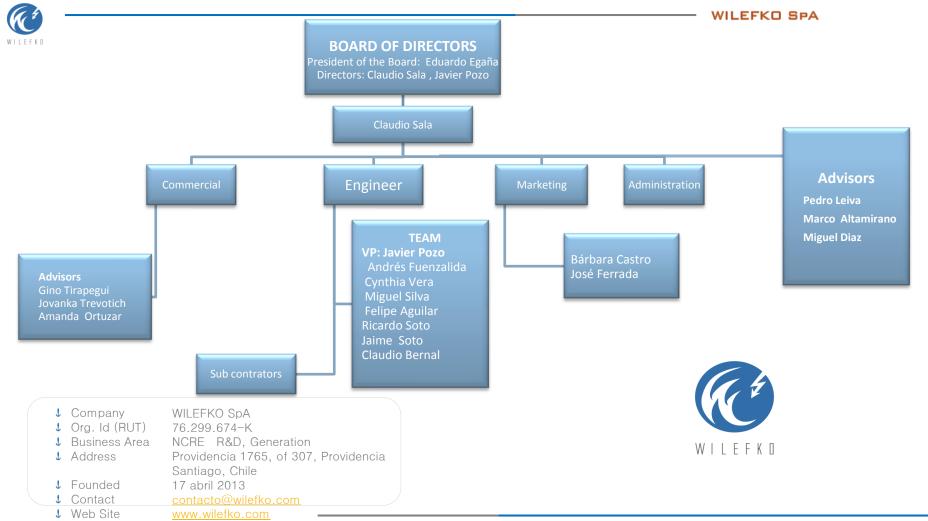
WILEFKO, stands for "shimmering" in Mapudungun, is a wave energy project that will generate clean electricity by extracting the kinetic energy of ocean braking waves

We are an Investigation, Development, Innovation and Endeavour project (I+D+i+e). We were made up as company under the form of Society per Actions (SpA), in April 2013, with the initial contribution of 6 charter members

Vision

To be a company recognized because of the innovation and contribution to the clean and renewable energy, positioning the Chilean human capital in the world in this matter.

Mision


To be the first wave power technology with commercial application in the national energy matrix, and one of the leaders with real industrial application worldwide.

Brief History

- **J** March 2011: Wilefko is born, from the very first ideas outlined with a pen in a paper napkin.
- January 2012: we got the INNOVO sponsorship, from Universidad de Santiago de Chile (USACH).
- **J** September 2012: Consist in a team of 12 engineers and technicians, engaged with the project, sharing their specific knowledge to get success.
- J October 2012: the projects won government funds from CORFO, for U\$D 300.000.-
- J December 2012: second international search report from World International Patent Office, WIPO, declares that Wilefko project has Novelty, Inventive Activity And Industrial Application. EXCLUSIVE RIGHT, 27 countries
- 1 2012,2013: three field trial at Con-Con beach, Chile,
- J October 2014: Publication of laboratory results in First Workshop on Wave and Tidal Energy, organized by the University of California at Berkeley and Universidad Austral de Chile, Valdivia Chile <u>see video</u>

THE TEAM, LINE FIRST

Eduardo Egaña, Computer Engineering at Universidad del Norte, Diploma entrepreneur Universidad de Santiago, Chile. 17 years as owner/manager at DPA computer, creating and offering to the market, 16 different complex Systems, and electronic control equipment. It was pioneer in: 1) Integration of multiplatform system, 2) Developing multi-poll devices, 3) Developing a POS system based on touch-screens for Festival de Viña 4) Various products marking trends in the field of automation.

In 2011 invents and initiates the wave energy entrepreneurship project to generate energy from the sea, with the aim of contributing to clean energy. Formed a team of 18 people, including engineers and technicians, and was able to raise \$ 300 of governments funds supported by CORFO INNOVO, an incubator of Universidad de Santiago, Chile.

Eduardo.egana@wilefko.com Phone : (56+9) 9884 1349

DIRECTOR & BUSINESS RELATION Claudio Sala, Universidad Adolfo Ibáñez: MBA Executive (Management and Administration), Universidad de Chile: Civil Electrical. CIISA: System Engineer. Update seminars at Berkeley University (California) and Harvard University

(Cambridge, MA.).

35 years of experience leading complex projects covering negotiation, monitoring and management of complex IT services. Relevant experience dealing with outsourced contracts with the largest IT providers from Chile, Brasil and Argentina. Extensive experience leading teams of IT in these countries, more specific treatment in Brazil, Peru and Colombia. It uses the expertise as leverage IT Business Development with strong focus to work with highly motivated teams (Human Capital Approach).

Extensive experience in complex environments internal and external political management, in hostile environments and adverse scenarios for the implementation of corporate technological changes of high impact on the organization.

Today, works as leader and responsible for the introduction of innovation environments in one of the larger universities of Chile, creating there an innovative eco-system of co-working, at Universidad San Sebastian, Santiago, Chile (30.000 students)

Claudio.sala@wilefko.com Phone: (56+9) 6728 9794

JAVIER POZO Mechanical Civil Engineer, Universidad de Santiago. 8 years of experience

8 years experience in engineering projects, he has participated as Mechanical/Piping Engineer, PDMS administrator/coordinator and 3D specialist, in steps of basic feasibility of complex projects; basic and detail engineering of projects in the fields of Bigger Mining and Pulp Camps. Strong experience EPCM mining participating in Copper, Gold and Nickel mining camps in the areas of Material Handling, Process Plant, Port-Site, and Plant Lixiaviación SX.

Experience in software management with broad domain of Aveva PDMS, Navisworks Autodesk, Aveva Review, Bentley AutoPIPE, 2D AutoCad and MicroStation V8. Experience in calculation and modeling of parts and mechanical assemblies with advanced mechanical design software 3D (Autodesk Inventor Pro, Solidworks and Solid Edge). Current job: AMEC, Manager and Coordinator PDMS 3D.

CYNTHIA VERA Mechanical Civil Engineer, Universidad de Santiago. 8 years of experience

Eight years of Mechanical Engineering experience in Engineering: pulp and paper, smelting and concentrators of copper mining; and Field experience as piping field engineer in the construction of a concentrator plant.

Performed in various technical, supervisory assignments in mechanical and piping systems design, engineering development, construction and start up projects, work with international standards as ASME, AWS, ASTM, ANSI, ISO, API, BS, EN, DIN, AWWA, Etc. Good interpersonal skills and experience of working in multi-international project teams. Actual position: Bechtel Chile and Fluor Daniels.

ANDRES FUENZALIDA, Industrial Civil Engineer, Universidad Diego Portales.10 years experience

Strong experience in the electric energy and thermal fluids fields, with experience in the areas of renewable energy, thermodynamics, electrical laws, national electricity market as energy efficiency consultant (National Standards Institute). Consultant and project manager at Energy Efficiency validated by INN. Innovation Award 2007 by Dalkia International, Paris – France 2007, for variable business model in selling industrial steam and dairy products. Achieving returns of over 15%. Development machine to generate electricity from the ocean waves. Actual position: FUENZALIDA And SANTIS LTDA.

MIGUEL SILVA CORTEZ, Industrial Mechanical Technician Universidad Técnica Del Estado. 35 years experience

Extensive experience in maintenance of equipment and machinery in Transportation, Mining and Fishing Fleet and marine vessels. Experience in mining camps at BHP Billiton (Minera Escondida Leeds), Superintendent of Maintenance Workshops Mina. (15 years)

FELIPE AGUILAR (PHD) Physic Engineer Universidad de Santiago. 6 years of experience

Doctor, Ecole Normale Supérieure de Lyon,. Academic and Investigadtor at Universidad de Santiago, Chile

CYNTHIA VERA Mechanical Civil Engineer, Universidad de Santiago. 8 years of experience

BARBARA CASTRO

Costume Designer Universidad Técnica Inacap Post grade ESDI, Barcelona 12 years experience

JOVANKA TREBOTICH

Biochemical Universidad de Santiago MSc Gestión Tecnológica 4 years of experience

Mauricio Egaña, Collaborators Ing. eje informática Fabiola Díaz. Ing. en Financiero

Daniela Molina. Actriz, ecologista

JAVIER POZO Mechanical Civil Engineer, Universidad de Santiago. 8 years of experience

PEDRO LEIVA Attorney Universidad Diego Portales . Candidate to Master in Law, University of California Davis 6 years experience

CLAUDIO BERNAL

Hydrography - Oceanography Academia Politecnica Naval 11 years of experience

> Diego Silva, Ingeniería ambiental, USACH José Luis Menares Documentalista

Carlos Wittersheim Constructor Civil

CLAUDIO SALA

Electric Civil Engineer Universidad de Chile MBA UAI, Innovation Diploma USS 30 years of experience

MARCO ALTAMIRANO Attorney Universidad Católica de Valparaíso. 6 years experience

ANDRES FUENZALIDA. Industrial Civil Engineer, Universidad Diego Portales. 10 years experience.

FELIPE AGUILAR (D) Physic Engineer Universidad de Santiago. 6 years of experience

JAIM E SOTO sub official Navy tactical diver. 20 years of experience

MIGUEL DÍAZ Attornev Universidad del Desarrollo Magíster en Derecho Tributario, UDD 6 years experience

> **JOSE FERRADA** Publicist Universidad UNIAC 3 years of experience

RICARDO SOTO Electric Civil Engineer. Universidad Austral. 20 years of experience

AMANDA ORTUZAR Tec. Ambiental. U. de Federal de Minas Gerais 2 años

> **DAGOBERTO CASTRO** 30 years of experience

EDUARDO EGAÑA, Entrepreneur, Inventor, Informatic UCN. **Diploma USACH** 20 years experience

Parque la Boca

Concón

Project supported by

WITTERSHEIM Molinos Industriales

MILESTONES

EXCLUSIVENESS RIGHTS OVER THE TECHNOLOGY UNTIL YEAR MULTIPLE ACTIVITIES 2031, IN CHILE AND WORLDWIDE PI/CL 2011/02154 W0/2013/029195 NATIONAL AND INTERNATIONAL RESEARCH REPORT DECLARES THAT WILEFKO INVENTIONS GATHERS: ✓ NOVELTY \checkmark AN INVENTIVE STEP ✓ INDUSTRIAL APPLICATION. **H** A.A.M.S. + 101 **(** 27 COUNTRY http://youtu.be/CMnwzIf-yvk ACTIVITIES FOR TECHNOLOGY PROMOTION

ENTREGAR UN MUNDO MEJOR PARA LAS FUTURAS GENERACIONES

C

WILEFKO

wilefko.com

Se parte de este proyecto Contacto@wilefko.com

WAVE ENERGY

EXTRACTING KINETIC ENERGY FROM

OCEAN BRAKING WAVES

EDUARDO.EGANA@WILEFKO.COM CLAUDIO.SALA@WILEFKO.COM INFO@WILEFKO.COM

2015

